Finite Volume Approximation of the Linearized Shallow Water Equations in Hyperbolic Mode

نویسندگان

  • ARTHUR BOUSQUET
  • AIMIN HUANG
چکیده

Abstract. In this article, we consider the linearized inviscid shallow water equations in space dimension two in a rectangular domain. We implement a finite volume discretization and prove the numerical stability and convergence of the scheme for three cases that depend on the background flow ũ0, ṽ0, and φ̃0 (subor super-critical flow at each part of the boundary). The three cases that we consider are fully hyperbolic modes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Volume Multilevel Approximation of the Shallow Water Equations with a Time Explicit Scheme

We consider a simple advection equation in space dimension one and the linearized shallow water equations in space dimension two and describe and implement two different multilevel finite volume discretizations in the context of the utilization of the incremental methods with time explicit or semi-explicit schemes.

متن کامل

Well-balanced bicharacteristic-based scheme for multilayer shallow water flows including wet/dry fronts

The aim of this paper is to present a new well-balanced finite volume scheme for two-dimensional multilayer shallow water flows including wet/dry fronts. The ideas, presented here for the two-layer model, can be generalized to a multilayer case in a straightforward way. The method developed here is constructed in the framework of the Finite Volume Evolution Galerkin (FVEG) schemes. The FVEG met...

متن کامل

Well-balanced finite volume evolution Galerkin methods for the shallow water equations

We present a new well-balanced finite volume method within the framework of the finite volume evolution Galerkin (FVEG) schemes. The methodology will be illustrated for the shallow water equations with source terms modelling the bottom topography and Coriolis forces. Results can be generalized to more complex systems of balance laws. The FVEG methods couple a finite volume formulation with appr...

متن کامل

Understanding the treatment of waves in atmospheric models, Part I: The shortest resolved waves of the 1D linearized shallow water equations

This paper provides an intercomparison of the dispersive and diffusive properties of several standard numerical methods applied to the 1D linearized shallow water equations without Coriolis term, including upwind and central finite-volume, spectral finite-volume, discontinuous Galerkin, spectral element, and staggered finite-volume. All methods are studied up to tenth-order accuracy, where poss...

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014